Guru3D.com
  • HOME
  • NEWS
    • Channels
    • Archive
  • DOWNLOADS
    • New Downloads
    • Categories
    • Archive
  • GAME REVIEWS
  • ARTICLES
    • Rig of the Month
    • Join ROTM
    • PC Buyers Guide
    • Guru3D VGA Charts
    • Editorials
    • Dated content
  • HARDWARE REVIEWS
    • Videocards
    • Processors
    • Audio
    • Motherboards
    • Memory and Flash
    • SSD Storage
    • Chassis
    • Media Players
    • Power Supply
    • Laptop and Mobile
    • Smartphone
    • Networking
    • Keyboard Mouse
    • Cooling
    • Search articles
    • Knowledgebase
    • More Categories
  • FORUMS
  • NEWSLETTER
  • CONTACT

New Reviews
AMD Ryzen 5 5600 review
PowerColor RX 6650 XT Hellhound White review
FSP Hydro PTM Pro (1200W PSU) review
ASUS ROG Radeon RX 6750 XT STRIX review
AMD FidelityFX Super Resolution 2.0 - preview
Sapphire Radeon RX 6650 XT Nitro+ review
Sapphire Radeon RX 6950 XT Sapphire Nitro+ Pure review
Sapphire Radeon RX 6750 XT Nitro+ review
MSI Radeon RX 6950 XT Gaming X TRIO review
MSI Radeon RX 6750 XT Gaming X TRIO review

New Downloads
AIDA64 Download Version 6.70
FurMark Download v1.30
Display Driver Uninstaller Download version 18.0.5.1
Download Samsung Magician v7.1.1.820
Intel ARC graphics Driver Download Version: 30.0.101.1732
HWiNFO Download v7.24
GeForce 512.77 WHQL driver download
Intel HD graphics Driver Download Version: 30.0.101.1960
AMD Radeon Software Adrenalin 22.5.1 WHQL driver download
3DMark Download v2.22.7359 + Time Spy


New Forum Topics
Review: AMD Ryzen 5 5600 processor NVIDIA GeForce 512.77 WHQL driver download & Discussion Windows 11 Release Build [3rd-Party Driver] Amernime Zone Radeon Insight 22.5.1 WHQL Driver Pack (Released) Review: FSP Hydro PTM Pro (1200W PSU) Free to grab: Borderlands 3 free on Epic Games Store Review: Radeon RX 6500 XT - (when 4GB just isn't enough anymore) AMD FidelityFX Super Resolution 2.0 - Deathloop preview GeIL releases DDR5 memory with active cooling and two new RGB fans. NVIDIA LHR version 3 anti-crypto algorithm for RTX 3050/3080 12GB would be 90% unlocked




Guru3D.com » Review » AMD Ryzen 5 1500X and 1600X review » Page 3

AMD Ryzen 5 1500X and 1600X review - A Little More Architectural Detail

by Hilbert Hagedoorn on: 04/11/2017 03:00 PM [ 5] 153 comment(s)

Tweet

Up-to 20 MB L2+L3 Cache

The Ryzen caches, we already spilled the beans on that one but initially all we got was the number which is 20 MB (for an 8-core processor) for the L2 and L3 cache, and that matches what we have discussed numerous times.
  



The AMD Ryzen 5 Processor Die still holds eight cores
   

One core out of the eight available

 
The 8-core part with two four-core CCX units aka Summit Ridge aka RYZEN in the end get a L1 data cache size of 32 KiB, a L1 instruction cache size of 64 KiB and then a L2 cache size of 512 KiB per core.

  • L1 8 x 32 Kb Data
  • L1 8 x 64 Kb Instruction
  • L2 8 x 512 Kbytes
  • L3 2 x 8 Mbytes L3

The 6-core part with two four-core CCX units aka Summit Ridge aka RYZEN in the end get a L1 data cache size of 32 KiB, a L1 instruction cache size of 64 KiB and then a L2 cache size of 512 KiB per core.

  • L1 6 x 32 Kb Data
  • L1 6 x 64 Kb Instruction
  • L2 6 x 512 Kbytes
  • L3 2 x 8 Mbytes L3

The 4-core part with two four-core CCX units aka Summit Ridge aka RYZEN in the end get a L1 data cache size of 32 KiB, a L1 instruction cache size of 64 KiB and then a L2 cache size of 512 KiB per core.

  • L1 4 x 32 Kb Data
  • L1 4 x 64 Kb Instruction
  • L2 4 x 512 Kbytes
  • L3 2 x 8 Mbytes L3

So that is 6 x 512 KB (L2) + 2 x 8 MB (L3) = 19 MB in total for caches for Ryzen 5 1600(X) and 18MB in total for the quad-core parts as the L3 cache remains an open biffer pool at 8 Mbytes per cluster, again one Core Complex Unit holds four processor cores. The L2 and L3 caches are similar in size compared to the Intel Core i7-6900K. The processor has dual channel DDR4 support (up-to 3200MHz), AVX2, AES, FMA3, AMD-V SSE 4.1 and 4.2 instruction sets etc. The bus frequency is 100 MHz multiplied by whatever the processor fires off at it. Ryzen is built with a 14nm FinFET fab node, this greatly helps where AMD is with the performance and power consumption. For the transistor aficionados, the number is 4.90 Billion of them.
 



You have got to like SMT threading - 4 cores / 8 threads at 189 USD and if you overclock it a little, boom, 4 GHz on all cores.


Technology Highlights

AMD is implementing technology that will make sure that this processor runs applications efficiently and optimized. SenseMI is a set of sensing and adapting technologies, including an artificial network inside every “Ryzen” processor to anticipate future decisions, preload instructions, and choose the best path through the CPU.
  
AMD is
 also introducing a new interconnect called AMD Infinity Fabric. This is a new and fast way of connecting various parts within an SoC. Infinity Fabric is not just used in the RYZEN processors, but also in future (Vega) AMD GPUs and (almost) all other AMD chips in the near future. Infinity Fabric allows for faster and better secure connections within a chip. The inter- and intra-chip connector will be standardized and used in many AMD products and, as such, AMD can easily communicate over that very same interconnect. SenseMI technology then; it is based on five parts as shown in the slide below. Pure Power is a technology that allows the Ryzen chips and other Ryzen variants to work as efficiently as possible.

According to AMD, the CPUs are equipped with hundreds of sensors that monitor temperature, voltage and power consumption of all chip segments. Through the Infinity Fabric connections these sensors are all connected to a central control unit, the Infinity System Management Unit. The same network of sensors constantly monitors how much room there is left for extra performance, chip parts can be independently adjusted from each other. Clock frequencies within a split second can be altered in steps of 25 MHz. To understand the euphemism that is SenseMI, everything inside the processor works heterogeneously and optimized. So you get precise boost frequencies matched to power management. What is a simple to grasp manner to understand is that SenseMi will do a lot of analyzing and smart prediction based upon the workload at hand. 

If I recall correctly, it was back in the summer in a presentation that AMD already announced that the existing Zen branch predictor (the code that predicts the path where branches in code probably will be) was mentioned to have been greatly improved. AMD indicated that has improved thanks to AI-like algorithms and protocols. The new branch predictor has a self-learning system on board, making decisions based on good or bad branches and thus it can adapt and improve on performance based upon specific workloads and surrounding dynamics. Branch prediction is essential for the efficient operation of the processor. Based on applications and workloads it can detect what course or path is better to follow, making the result a faster one. It will analyze the workload and adapt and optimize based on that. The huge gain in RYZEN IPC (now rated at a 52% IPC increase over last –gen) performance is to be found, among other things, right here with much-improved branch prediction.

So decisions are driven by software code execution and anticipate on following decisions, pre-load instructions, choose the best path through the CPU. It’s pretty impressive when you think about it, a processor that optimizes workloads based on algorithms and predictions. AMD will be able to precisely bin and adjust clock frequencies in steps as small as 25 MHz. RYZEN will get that much smarter a prefetecher that anticipates the location of future data accesses by application code. It has a learning algorithm model and learns application data access patterns allowing it to prefetch vital data into local cache memory so it’s ready for immediate use. Efficiency at its best, and after seeing the first results, AMD might have struck gold here.

  

 
Back to SenseMI; SenseMI is a monitoring algorithm that monitors and adapts on many levels. On a more arbitrary level this will also mean that SenseMI, with its many sensors, can recognize thermal characteristics and adapt to them, e.g. a better cooler will optimize the processor to go faster and perhaps clock the Turbo bins upwards a notch. A RYZEN processor with water-cooling will get better temperatures, right? Well, the technology will detect that thermal signature and as such it will allow higher boost frequencies with better cooling. Thermal tweaking control at the processor level. 
And that is where we arrive at XFR; XFR alone uses like 100+ sensors (out of a 1000+ sensors per core complex CCX) inside the system and can boost the frequency above the specs available. So it’ll give you a perf boost based on proper cooling and variables like processor binning. With a processor that normally boosts to, say, 4.0 GHz you could see the processor reach a higher boost at 4.1 GHz, if the circumstances are right.




29 pages « 2 3 4 5 next »



Related Articles
AMD Ryzen 5 5600 review
It's quite late to the market, but AMD recently released the non-X SKUs of several processors. Today we look at the AMD Ryzen 5 5600. The processor has a locked multiplier but still is configured at...

AMD Ryzen 7 5800X3D review
It's time for another ZEN3 review, this time something extra special for gamers. It's the much-discussed Ryzen 7 5800X3D. The CPU, which is on many people's radar, features eight cores and sixteen ...

AMD Ryzen 5 5600G and Ryzen 7 5700G review
It's time for some new reviews, announced a while ago for the OEM market, but now available in retail are the Ryzen 7 5700G (8c/16t) and Ryzen 5 5600G (6c/12t) APUs. These puppies come with integrat...

AMD Ryzen 7 5800X review
It's time for already our 4th ZEN3 review, yes the much anticipated Ryzen 5 5800X. This is the processor that is on the watchlist of many with 8 cores and 16 threads if offers a bit more flexibility ...

© 2022