ASUS Is looking into applying liquid metal opposed to TIM in some of their Game laptops
Serious overclockers and enthusiasts have long used liquid metal on high-end machines, but it’s typically applied by hand, which isn’t feasible for mass production. For more than a year, we’ve been developing a proprietary process and machine capable of applying it at scale. ASUS sees that differently.
Liquid metals have low melting points that render them fluid at room temperature. These alloys are highly conductive, so they’re extremely effective at transferring thermal energy between surfaces like a processor die and heatsink. The benefits are well-established in overclocking and DIY circles. ASUS internal testing reinforced the appeal for gaming laptops and their engineers observed a 10~20°C reduction in temperatures depending on the CPU.
-- ASUS --
The improved thermal interface creates margin that can be used in different ways. Lower temperatures help processors sustain higher clock speeds for longer, and also prevent fans from ramping up to louder RPMs. The additional thermal headroom can also be used to reach even faster frequencies and higher performance.
ASUS applies Conductonaut from Thermal Grizzly because it has a lower concentration of tin, which isn’t as conductive as the gallium and indium that also make up the alloy. Rather than working closely with Thermal Grizzly like we do with other partners, we purchased initial quantities more casually to keep the project a secret. Not even Intel knew of our plans during development.
Step one is essentially painting; a mechanized arm wets its brush in a container of liquid metal and then glides back and forth across the CPU. It performs exactly 17 passes, which our extensive testing determined is the ideal number for complete coverage. Rather than simply sliding back and forth, the machine mimics human motion by also moving vertically to add a subtle arc.
We did a lot of internal testing to determine how much liquid metal is best. Too little reduces the efficiency of thermal transfer, but too much increases the likelihood of leakage and needlessly wastes an expensive material. The first stage doesn’t apply enough, so a second machine injects more compound at two points on the die. The surface tension created by the initial coat helps spread the additional material without subsequent brushing.
Finding the right components for the second stage was one of the most challenging aspects of the project. Although we were able to use off-the-shelf parts, it was extremely difficult to source ones capable of not only housing liquid metal, but also reliably dispensing a precise dose. The syringe and pump are made of stainless steel to avoid reacting with the compound.
ROG is so metal
Our liquid metal project is still ongoing as we continue pursuing better cooling for gaming laptops. Last year’s ROG Mothership was our first system to take advantage of the technology. Its limited production run allowed us to pilot an earlier version of the process that relied on hand-painting the initial coat. We automated the brushing stage to improve efficiency and redesigned the shim to work across different motherboards, enabling a much wider rollout across the full family of ROG gaming laptops with 10th Gen Intel Core processors. Patents on our liquid metal process and sponge formally recognize the innovation ROG continues bringing to gaming laptops. The superior thermal compound enhances cooling enough to tangibly improve performance, temperatures, and acoustics. Where it was once restricted to the realm of hardcore overclocking, we’re making liquid metal available to a much larger audience.
ROG laptops with Thermal Grizzly Conductonaut liquid metal will be available in Q2 of this year. Contact your local ROG representative for details on pricing and availability in your region, and see our 2020 gaming laptop guide to learn about the lineup.
Senior Member
Posts: 806
Joined: 2008-05-09
They had better be thinking long and hard about this before going forward. As a Dell field tech, I saw someone fry both their motherboard AND their GPU in an Alienware when they applied liquid metal, all because they failed to consider the possibility that it could leak onto the resistors that often surround mobile chips.
Senior Member
Posts: 1679
Joined: 2012-04-30
@
lol, if been using it for years and wasn't a "pro" when it comes to having experience in applying LM,
yet i didn't fry anything, so clearly not the product.
there is no subtle difference. you apply i right or you didn't.
and if you read the manual, search the web for 5 min (which was not even giving the same results when i did it +5y ago),
would have shown you it only needs to be "wetting" the HS surface (not covering it), automatically preventing any leak/run off.
or how is it aht so many ppl are using it without problems?
outside the fact that kryonaut is a company, not a (certain) product.
works with things like tissue paper, but not when you want to differentiate between different TIM stuff.
and unless someone shows me lab results proving that its not, especially with things like LM,
i believe they are all made in the same plant and just come with different packaging/labels.
similar to LSD nimh batteries. check amazon/ebay how many different brands are selling them, yet there is only ONE plant on the planet that makes them.
Senior Member
Posts: 1324
Joined: 2005-08-05
Liquid metal is a good ide. I'm using LM on my delidded 7980xe, and with LM it's pretty easy to cool. 4700mhz all core is good enough for me.
Senior Member
Posts: 9793
Joined: 2011-09-21
It’s gonna be on all the Intel based ROG laptops. They did this last year on the mothership. Eluktronics has been doing this for a while.
Senior Member
Posts: 5741
Joined: 2012-11-10
In terms of total thermal capacity, no, not really. In terms of removing heat way from the CPU as quickly as possible (which is the primary goal of a heatsink) then yes, liquid metal makes a substantial difference.
That being said, I'm not really sure what the thermal capacity of a typical laptop heatsink is. Most laptops I've encountered with an i5 or better spew out a lot of heat under full load.