Guru3D.com
  • HOME
  • NEWS
    • Channels
    • Archive
  • DOWNLOADS
    • New Downloads
    • Categories
    • Archive
  • GAME REVIEWS
  • ARTICLES
    • Rig of the Month
    • Join ROTM
    • PC Buyers Guide
    • Guru3D VGA Charts
    • Editorials
    • Dated content
  • HARDWARE REVIEWS
    • Videocards
    • Processors
    • Audio
    • Motherboards
    • Memory and Flash
    • SSD Storage
    • Chassis
    • Media Players
    • Power Supply
    • Laptop and Mobile
    • Smartphone
    • Networking
    • Keyboard Mouse
    • Cooling
    • Search articles
    • Knowledgebase
    • More Categories
  • FORUMS
  • NEWSLETTER
  • CONTACT

New Reviews
Samsung 970 EVO M.2 500GB NVMe SSD review
Corsair HS60 Headset review
Gigabyte Aorus X470 Gaming 7 Wifi review
ASUS ROG Crosshair VII HERO (Wifi) review
MSI X470 Gaming M7 AC review
AMD Ryzen 7 2700X review
AMD Ryzen 5 2600X review
NZXT Kraken X72 Review
HP EX900 500GB M.2. SSD review
be quiet! Dark Rock PRO 4 review

New Downloads
Guru3D RTSS Rivatuner Statistics Server Download v7.1.0 Final
MSI Afterburner 4.5.0 (Official) Download
inSpectre Download v8
AMD Chipset Drivers Download v18.10.0418
Corsair Utility Engine Download (iCUE) Download v3.1.133
Corsair Utility Engine Download (CUE) Download v2.24.50
Corsair Link Download v4.9.7.35
HWiNFO64 Download v5.82
PCMark 10 Download v1.0.1493
Display Driver Uninstaller Download version 17.0.8.5


New Forum Topics
Download: MSI Afterburner 4.5.0 Windows: How to get latest CPU microcode without modding the BIOS Nvidia: AI Reconstructs Photos with Realistic Results Review: AMD Ryzen 7 2700X processor [OFFICIAL] Windows 10 RS4 - Build 17134 RTM Windows 8.1 Server Standard 2012 R2 x64 Drivers Issues How to fix game stutter on Windows 10 Creators Update + Can games using PhysX run faster with newer files ? AMD Ryzen 5 2600 CPU Gets Delidded And Tested The GTX 1080-Ti Thread




Guru3D.com » Review » GSkill RipjawsX 32GB 2133MHz DDR3 review » Page 4

GSkill RipjawsX 32GB 2133MHz DDR3 review - Memory timings explained

by Hilbert Hagedoorn on: 04/09/2012 02:00 PM [ 3] 0 comment(s)

Tweet


Memory timings explained

What are memory timings?

Okay, allow me to explain a little what you will run into with memory timings. First off latency. We used the word numerous times already in this article. Latency is the time between when a request is made and the request is answered. I.E, if you are in a restaurant for a meal, the latency would be the time between when you ordered your meal to the time you received it. The faster your order is served, the better right ?

Therefore, in memory terms, it is the total time required before data (your meal) can be written to or read from the memory. latency - lower is better.

Say we notice on the packaging is this: CL9-11-11-31 1.60V (2T) for a memory kit. What do the numbers mean ? Well this refers to CAS-tRCD-tRP-tRAS CMD (respectively) and these values are measured in clock cycles.

CAS Latency
Undoubtedly, one of the most essential timings is that of the CAS Latency and is also the one most people can actually understand. Since data is often accessed sequentially (same row), the CPU only needs to select the next column in the row to get the next piece of data. In other words, CAS Latency is the delay between the CAS signal and the availability of valid data on the data pins (DQ). Therefore, the latency between column accesses (CAS), plays an important role in the performance of the memory. The lower the latency, the better the performance. However, the memory modules must be capable of supporting low latency settings.

tRCD
There is a delay from when a row is activated to when the cell (or column) is activated via the CAS signal and data can be written to or read from a memory cell. This delay is called tRCD. When memory is accessed sequentially, the row is already active and tRCD will not have much impact. However, if memory is not accessed in a linear fashion, the current active row must be deactivated and then a new row selected/activated. It is this example where low tRCD's can improve performance. However, like any other memory timing, putting this too low for the module can result in instability.

tRP
tRP is the time required to terminate one one Row access and begin the next row access. Another way to look at this it that tRP is the delay required between deactivating the current row and selecting the next row. Therefore, in conjunction with tRCD, the time required (or clock cycles required) to switch banks (or rows) and select the next cell for either reading, writing or refreshing is a combination of tRP and tRCD.

tRAS
Memory architecture is like a spreadsheet with row upon row and column upon column with each row being 1 bank. In order for the CPU to access memory, it must first determine which Row or Bank in the memory that is to be accessed and activate that row via the RAS signal. Once activated, the row can be accessed over and over until the data is exhausted. This is why tRAS has little effect on overall system performance but could impact system stability if set incorrectly.

Command Rate
The Command Rate is the time needed between the chip select signal and the when commands can be issued to the RAM module IC. Typically, these are either 1 clock or 2.

Memory testing is a process of trial and error, find and seek the maximum. This is pretty much a sucker for your free time.

Traditional system: If you are going to overclock then increase the system bus frequency, change the memory timings, but most of all alter memory dividers until your system won't boot. If you are not comfortable with such a thing, hey this isn't your game then. I recommend you to lower the processor's multiplier and then slightly increase the FSB with high memory timings and take it from there timings wise.  For a Core i5/i7 system: change memory multipliers/dividers in the BIOS or overclock Baseclock, QPI frequency and memory voltage.

G.Skill 32GB memory kit 2133 MHz




12 pages « 3 4 5 6 next »



Related Articles
GSkill RipjawsX 32GB 2133MHz DDR3 review
We review the GSkill RipjawsX 32GB 2133MHz DDR3 memory kit. That's right, a 32GB kit. This 4x 8GB kit can be set at 2133 MHz CAS9 with just the flick of an XMP switch in the BIOS.

© 2018